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Received 5 May 1982 

Abstract. We formulate a generalisation of the droplet theory of king systems to droplet 
systems containing more than two phases, valid near one dimension and based on the 
configurational energy of surface tension. Thermal and magnetic exponents for these 
multi-phase systems are compared with the results for a q-state Potts model in an external 
field. The Potts exponents are obtained using a Migdal recursion formula and are shown 
to be of very similar structure. 

1. Introduction 

There has been considerable interest in droplet models in the area of critical 
phenomena. The ‘classical’ droplet picture was formulated by Becker and Doring 
(1935); a detailed description can be found in Frenkel (1955). Andreev (1963) and 
Fisher (1967) pointed out that the droplet model for condensation gives rise to an 
essential singularity of the free energy on the coexistence curve. Further studies and 
references are contained e.g. in the papers by Langer (1967), Domb (1976), Binder 
(1976) and Binder and Stauffer (1976). 

We shall use a droplet model as a possible approach to investigate the behaviour 
of Ising-like systems, especially near the critical point. Bruce and Wallace (1981), 
hereafter referred to as BW, presented a droplet description of Ising systems with the 
Hamiltonian given in terms of surface area. This intuitively very straightforward 
model gives rise to considerable insight into how basic physical quantities, such as 
dimensionality and critical droplet concentration, govern exponent values. 

In this paper, after reviewing the results for the two-phase model needed for the 
following, we generalise the description to multi-phase systems. In our framework 
this should provide an analogy to a Potts model (Potts 1952) with an appropriate 
number of spin states. 

To check this conjecture we derive a Migdal-Kadanoff recursion formula (Migdal 
1975/76, Kadanoff 1976) for the Potts model in an external field. As this renormalisa- 
tion group scheme becomes exact in the limit d = 1 we expect it to provide a good 
approximation in our case. 

We find that the thermal and magnetic exponents obtained via these two approaches 
are very closely related to one another. In particular, they agree in those orders where 
the results of the Migdal scheme are independent of the scale transformation parameter 
P* 

Furthermore, we analyse the diluteness approximation made by BW in neglecting 
partial droplet overlap. In the multi-phase system this approximation breaks down 
if the number of phases becomes very large for fixed dimension. Taking the same 
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limit in the Potts model changes its critical behaviour from a continuous to a discon- 
tinuous phase transition. With a view to the analogies between the Potts and the 
droplet models, we take the breakdown of the diluteness approximation as a sign for 
a similar change in the critical behaviour of the droplet model; i.e. we expect the 
droplet transition to turn first order for a sufficiently large number of phases. 

2. The droplet model for multi-phase systems 

Let us begin by reviewing the major results for the two-phase system as obtained by 
BW. The Ising-type model is set up by specifying the Hamiltonian governing the 
statistical mechanics of a single ‘spin-up’ droplet of a certain scale size R in 
homogeneous ‘spin-down’ phase. It is given in terms of surface area where the droplet 
is allowed to deviate from spherical by an amountf(7) in the direction 77 (Lij = x, a / a x j  - 
xi a/axi): 

BW use this Hamiltonian to derive an expression for the mean fraction of available 
space occupied by all droplets of ‘spin-up’ phase with scale size between R and R + dR 
in d = 1 + E dimensions: 

dR[1 +O(E ,  T(R))].  (2.2) 
S d  sy $(R)  dR = - 2 (T(R))-(2+E)’2 - exp - (--- 

IT R T ( R )  T, a d )  
Here Y is the correlation length exponent obtained as 

( 2 . 3 )  -1  
= E  + ; E 2 + ~ ( E 3 )  

and T, denotes the critical temperature: 

T, = E + O ( E ~ ) .  (2.4) 
T ( R )  is an appropriate renormalised temperature which exhibits a crossover from 
large R behaviour: T ( R )  - (R/[)-E, to small R behaviour: T ( R )  + T,. The correlation 
length 6 provides the physical length scale of the theory which controls the crossover. 

For R >>[, $(R) behaves as 

where the exponential contains the surface area of a large droplet. In the following 
calculations, $(R) can therefore be neglected in this limit. 

For R << 6, $(R)  behaves as 

$ (R ) = $8 - (2.6) 

the prefactor $o being 

Go = (2/IT)E - ( 2 . - E ” 2  exp[ - ( l+2C+2/~) ] [1  + O ( E ) ] = A ( ~ - * ’ ~ / E ) [ ~ + O ( E ) ]  (2.7) 

where C = 0.577 . . . is Euler’s number and A summarises all the constants. 
In order to construct multi-droplet configurations in a system allowing for more 

than two phases we start from a volume of scale size L occupied homogeneously by 
phase 1, say. It is decorated successively with droplets of all other phases and smaller 
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scale sizes down to a minimum scale size Lo  which plays the role of the lattice spacing. 
For each phase the amount of volume used at every step of the procedure is given 
by the same function (L(R). 

Thus each phase is assumed to have the same surface energy per unit surface area 
relative to any other phase. This leads us naturally to the Potts model as the appropriate 
spin model counterpart. In the q-state model the q spin vectors U=, U = 1,. . . , q, 
point to the vertices of a hypertetrahedron in (q - 1)-dimensional space. Consequently, 
there are only two different values for the interaction energy possible which we 
normalise in the following way: 

u a  = U 0  

ua f U' 
E ( u a ,  U') = -KS(ua, U a, p = 1,. . . , q  ( 2 . 8 )  

with K > 0 being the bond strength. Note that in this normalisation the standard Ising 
coupling KI is given as KI = K/2.  

One can now use the decoration procedure sketched above to calculate the volume 
fraction q 0 ( L ,  Lo) occupied by all outermost droplets of one phase k, k = 2 ,  . . . , q 
(outermost l-droplets are of course nonsensical in this context). Let us assume that 
we have already decorated down to scale size R.  In order to derive a differential 
equation for qo(L,  R )  we ask for the change dqo(L, R )  which occurs if the decoration 
procedure is carried out one step further to include droplets of scale size R +dR,  
where dR < 0. We find 

d'€'o(L, R)=-[l-(q-l)'P\~ro(L, R)]$(R) dR. (2.9) 

The term in square brackets contains the volume fraction which is available for the 
next step of the decoration procedure, i.e. which is not yet occupied by outermost 
droplets. The fraction of this volume which is actually used in the next step is given 
by (L(R) dR. The minus sign has to appear because dR < 0 but dq0(L, R )  > 0. 

Integrating from Lo up to L such that outermost droplets of all scale sizes between 
Lo and L are included yields 

(2.10) 

The volume fraction occupied by all outermost droplets of all phases is 

* 2 L ,  Lo) = (4 - lWO(L, Lo). (2.11) 

Similarly, to derive the total volume fraction q ( L ,  Lo) covered by k-phase 
(k = 2, . . . , q ) ,  we ask again for an appropriate differential equation. We assume as 
before that the decoration procedure has already been carried out down to scale size 
R.  Let us now decorate with droplets of all phases of scale size R +dR, dR < 0. One 
finds two contributions to the change d\Ir(L, R )  of the volume occupied by the single 
phase k : 

d'P(L, R ) =  -[1 -'P(L, R)]i+b(R) dR +(q - l )q (L ,  R)$(R) dR. (2.12) 

With the same sign convention as before, the first term describes a gain in the volume 
occupied by k-phase. This is caused by decorating the volume occupied by all 
other phases with droplets of k-phase. The second term reflects a loss in k-volume, 
when it itself is decorated with droplets of the other (q - 1) phases. 
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Integrating from Lo to L yields 

The corresponding volume fraction for l-phase is given by 

(2.13) 

(2.14) 

To calculate the mean number N(R)dR of k-phase droplets (k = 2, . . . , q)  with scale 
size between R and R +dR we first have to find the total volume occupied by these 
droplets and then divide it by the volume of a single droplet of scale size R.  The 
total occupied volume is given by the product of the available volume and the function 
$(L,  R )  which tells us what fraction of it is in fact occupied. Obviously, the available 
volume is the volume which is not yet occupied by larger k-phase droplets, so that 
we find 

N(R)=(L/R)d[ l - 'WL,  R)IJ/(R) (2.15) 

and by similar reasoning 

N'l ' (R) = ( ~ 5 / R ) ~ ( q  - l)Q(L, R)$(R) = (L/R)d[l  -'P(')(L, R)]$(R).  (2.16) 

It is now possible to calculate the critical droplet density pc. This quantity has to 
remain small in order to ensure the diluteness approximation contained in the deriva- 
tion of (2.2). Using equations (2.15) and (2.16) we find 

*(RI d L  

pc = (?) lL0 [(q - l )N(R)+N'"(R)]  dR =Lod(q - 1) dR - ILo R d  * 
(2.17) 

In the critical limit the correlation length 5 is very much larger than the lattice spacing 
Lo though still less than the system size L. We split the above integral into two parts 
ranging from Lo to 6 and from 6 to L. The second part is neglected because of the 
large R behaviour of $(R); in the first part (L(R) is replaced by its small R limit. 
Neglecting the contribution from the upper end of this integral as well, one finally has 

(2.18) 

It is clear from this expression and the preceding discussion that the number of phases 
must remain smaller than a certain maximum number qmax. Choosing a suitably small 
value for pc and inserting equation (2.7) for ccl0 yields for qmax 

Hence the maximum allowed number of phases can only be increased if at the same 
time d approaches 1. 

In order to find the net magnetisation of the system one has to specify the 
magnetisation contained in a droplet of phase k per unit volume. In straightforward 
generalisation of the Ising case we define the magnetisation as the sum over the q 
Potts spin vectors, each multiplied by the volume fraction occupied by the correspond- 
ing phase: 
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In performing the sum we use a recursion relation giving the spin vectors of a q-state 
Potts model in terms of those of a (4 - 1)-state model (Zia and Wallace 1975). The 
result reads 

&) = [1-4WL, J5o)la '  (2.21) 

where a' is the spin vector chosen to represent the original homogeneous phase. In 
the critical limit which is calculated in the same way as for p o  m") takes the form 

Thus the exponent p is identified as 

All the results obtained so far agree with the results for the Ising-like droplet 
system if q = 2. This is a first check on our generalisation. As a second check we 
shall derive a Migdal-Kadanoff recursion relation for the Potts model and use it to 
calculate critical exponents. These will then be compared with the droplet results. 
Note that so far, only the calculation of p made use of Potts model features. All 
other quantities were obtained completely independent of any spin picture. 

3. Migdal recursion relations 

We apply the Migdal-Kadanoff scheme to a d-dimensional hypercubic lattice of Potts 
spins. The procedure consists of two steps which are performed consecutively in each 
spatial direction. Firstly, all bonds and on-site potentials along a particular lattice 
direction are shifted to the edges of a lattice hypercube containing pd spins. Secondly, 
those spins which are now no longer coupled to their neighbours are decimated. Thus 
an anisotropy in the coupling is generated but its effect vanishes in the limit d = 1. 
Therefore, although our recursion relation originally refers to the direction of the 
first shift, this will not affect our results. 

Performing the linear chain decimation for Potts spins in an external field shows 
that the renormalisation group equations only close if we introduce a third coupling 
J in the Hamiltonian: 

X= -E {KS(a(i), o(i+l)) +$h[S(a(i), a') +S(a(i  + l), a')] 
i 

+ JS(o(i), a ( i  + l))[S(a(i), a') +S(a(i + l), a')]). (3.1) 

The external field is applied parallel to the direction of the spin vector a'. With our 
energy normalisation the field term thus produces contributions to 2 only for those spins 
which are in the state a'. The same Hamiltonian arises if the Hamiltonian of a 
(q - 1)-state lattice gas Potts model (Blume et a1 1971, Berker et a1 1978, Nienhuis et a1 
1979) is transformed into a q-state Potts Hamiltonian by introducing the vacancies as an 
extra spin state (Wu 1982). In our case this extraSpin state corresponds to the state a'. 
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To perform the decimation a transfer matrix approach proves useful. Eliminating 
p spins amounts to taking the pth product of the transfer matrix (T,,) where 

T:\) = e K + h + 2 J  Ti: = TL1i eh/2, , 

~ b f k  = c'" = eK, 4 a , p = 2 ,  * .  . , q ; a  # B .  (3.2) 7'") =Dili = 1, 

The elements of T"' can be expressed in terms of the elements of T"-"; solving this 
recursion with (3.2) as initialising conditions yields 

h / 2  -e 
W - R  

2(q - 1) 

W-R W + R  

+ e K + q - 2 i R ) ,  1 K + h + 2 J  a+ = z(e 

(3.3) 

Including the shift of the couplings as discussed above, the full Migdal-Kadanoff 

R = [ W 2 + 4 ( q - l ) e  h 3 1 /2  , w = eK+h+2 '  -eK -(q - 2). 

recursion relation is given as 

The fixed point of interest is the zero-field fixed point where h * = J* = 0 holds exactly, 
and K* obeys the equation 

Higher orders may be neglected because ford close to 1 we expect K * to be very large, its 
inverse approaching the zero-temperature fixed point when d goes to 1. 

Solving (3.5) to first order we have 

K *  = l / e  +0(1) (3.6) 

which confirms our expansion in exp(-K*). Moreover, it is found to be in accordance 
to first order with expression (2.4) for the critical temperature in the droplet picture. 

It is now straightforward to obtain critical exponents, e.g. 

p - 1  q - 2  
Inp 2 

u - l  - - - E + -  (__ exp(-K *) + 0 [exp(-2K*)]). (3.7) 

Comparison with (2.3) again shows agreement in first order. In particular, neither 
K * nor U show any q-dependence in first order. The magnetic exponent y H  reads 

2 

(3.8) -1 y H = d -'!? 9 exp(-2K*) + O[exp(-3K *)I. 6 l n p  
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Using scaling laws we obtain 

P = v(d - yk') = 
6 l n p  E 

where the 0(1) terms are contained in the constant C. 
The comparison with our previous result equation (2.22) for P shows that in both 

cases the first non-vanishing term in an e-'/' expansion of 
Note that we recover the same q-dependence as before. We cannot, of course, 

expect exactly the same prefactor structure. Firstly, this would require an explicit 
expression of the 0(1) terms in equation (3.6) for K * ;  and secondly, even then the 
prefactor has to be treated with some care as it depends on the scale parameter p .  
However, as usual in the Migdal scheme, the singularities which occur in the equations 
if we take p = 1 cancel. 

A very significant feature of the Potts model is the change of its critical behaviour 
from a continuous to a discontinuous phase transition. Mean-field theory predicts 
that the transition is first order for all q > 2 independent of the dimensionality (Kihara 
et a1 1954, Wu 1982 and references therein). This does not agree with the exact 
result for d = 2  where the transition is first order only for q >4 (Baxter 1973). 
Consequently, a considerable amount of research has been carried out to determine 
the number of spin states q,(d) above which, in d dimensions, the transition behaviour 
predicted by mean-field theory is found. For d-1 ,  qc(d) approaches infinity as 
qc(d)-e2'dp' (Berker et a1 1980, Nienhuis et a1 1981). Recall that in the droplet 
discussion the maximum allowed number of phases behaves as qmax - 4;' - E e''' for 
small E = d - 1. Because of the similarity of these two quantities and the analogies 
between the droplet and the Potts model obtained so far, one is tempted to extend 
the analogies further and conjecture a change from a continuous to a discontinuous 
phase transition in the droplet system if q > qmax. 

Let us conclude with a remark on the q = 1 case. It has been shown (Kasteleyn 
and Fortuin 1969) that the problem of bond percolation on a lattice can be formulated 
in terms of the q = 1 limit of the Potts model. A similar equivalence exists for site 
percolation (Giri et a1 1977, Kunz and Wu 1978). Starting from the standard field 
theoretic description of the Potts model and taking the limit q = 1, Lubensky and 
McKane (1981) find a singularity in the free energy which has the same structure as 
the one found by Langer (1967) in his studies of metastability in the Ising model. In 
the same spirit, we can easily extend our results to account for the case q = 1. A 
physical interpretation of this formal limit, however, presents some difficulties. This 
is obvious from the decoration procedure used to construct multi-droplet (i.e. close 
to criticality) configurations. It starts with the system being in the fully ordered state 
which is well defined for the droplet model. For the percolation problem, however, 
a precise description of the ground state is still missing. Furthermore, the decoration 
procedure requires at least two phases: one which is originally homogeneously dis- 
tributed in the system and another different phase which is used to start the decoration. 
With a view to these features, the relations between the configurational physics 
governing the percolation problem and the droplet framework certainly need further 
clarification. 

appears in order 
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4. Concluding remarks 

In order to describe Potts-like systems, we have presented two models: firstly, the 
problem was formulated in terms of droplets and their surface tension, and secondly, 
it was cast in a spin Hamiltonian form based on the interaction energy of neighbouring 
spin states. Although these two approaches originate from very different ideas, the 
respective results show apparent analogies. This provides a strong argument for the 
usefulness of surface tension droplet models in the area of critical phenomena. 
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